An Oxidative Transformation of N'-Phenylhydrazide to *t*-Butyl Ester Using a Copper(II) Halide–Lithium *t*-Butoxide System

Jun-ichi Yamaguchi,* Takashi Aoyagi, Ryohei Fujikura, and Takayuki Suyama* Department of Applied Chemistry, Faculty of Engineering, Kanagawa Institute of Technology, Shimo-ogino, Atsugi, Kanagawa 243-0292

(Received February 13, 2001; CL-010119)

Reactions of hydrazides or *N*'-phenylhydrazides with a copper(II) reagent prepared from copper(II) bromide and lithium *t*-butoxide smoothly proceeded to give the corresponding *t*butyl ester in high yield.

Previously we reported that a copper(II) reagent (1), which was prepared from copper(II) bromide and lithium *t*-butoxide, can be used for oxidative transformation of some functional groups containing a nitrogen atom. In a reaction of primary carboxamide¹ or *N*-substituted urea² with 1, isocyanate is apparently generated as an intermediate. Analogously, it was assumed that treatment of hydrazide with 1 would generate an acyl cation-like species which, in turn, could react with a nucleophile. Now we wish to report that treatment of hydrazides (2) or *N*-phenylhydrazide (3) gave the corresponding *t*-butyl esters (5) under mild conditions (Scheme 1).

 $\begin{array}{c} \text{CuBr}_2 + \text{LiOBu}^t \xrightarrow{\text{THF}} \text{copper(II) reagent} \\ \text{RT} & \text{copper(II) reagent} \\ \text{RT} & \text{RT} & \text{copper(II) reagent} \\ \text{R}^1 \xrightarrow{\text{N}}_{\text{H}} & \text{R}^2 \xrightarrow{\text{I}}_{\text{-N_2}} & \text{I}_{\text{R}^1} \xrightarrow{\text{O}}_{\text{R}^1} \xrightarrow{\text{O}}_{\text{R}^1} \\ \text{I}_{\text{-N_2}} & \text{I}_{\text{R}^1} \xrightarrow{\text{O}}_{\text{R}^1} \xrightarrow{\text{O}}_{\text{R}^1} \\ \text{I}_{\text{-N_2}} & \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} & \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} & \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} & \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} & \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} & \text{I}_{\text{R}^1} \\ \text{I}_{\text{R}^1} & \text{I}_{\text{R}^1} \\ \text{I}_{\text$

Boc=*t*-butoxycarbonyl; Z=benzyloxycarbonyl.

Scheme 1.

Among alkyl esters, the *t*-butyl group is an important protecting group of carboxylic acid. Although many methods for the preparation of the *t*-butyl ester are reported,³ development of new methodology is still required.

Concerning treatment of hydrazide **2** with some oxidants, the first investigation was reported by Curtius who oxidized **2** with iodine to the corresponding diacylhydrazines **6**.⁴ Several oxidizing agents, such as chlorine,⁵ iodobenzene diacetate,⁶ NaIO₄,⁷ Ag₂O,⁷ K₃[Fe(CN)₆],⁷ and sodium metaperiodate,⁸ are available for the oxidation of hydrazides. However, oxidation of hydrazide bearing some substituents on the nitrogen atom has hardly been reported.

Hydrazides 2 were easily prepared by a reaction of methyl ester with hydrazine hydrate.⁹ N-Phenylhydrazides 3 were prepared by treatment of acyl chloride with phenylhydrazine in the

presence of triethylamine or by reaction of carboxylic acid with phenylhydrazine with the aid of 1,3-dialkylcarbodiimide as a condensing agent.

The first examination in the present study was treatment of benzhydrazide 2a with 4.2 molar amounts of 1 at room temperature (Table 1, Run 1). It was found that the reaction proceeded with evolution of nitrogen to give t-butyl benzoate 5a with a small amount of N,N'-dibenzoylhydrazine **6a**. When the amount of 1 was increased, the yield of 5a increased (Run 2). A reaction of N-phenylbenzhydrazide 3a was also performed under similar conditions producing t-butyl ester 5 as the main product, and a small amount of N',N'-diphenylbenzhydrazide was isolated as a by-product, which was confirmed by ¹H and ¹³C NMR, and mass spectra (Run 3).¹⁰ This fact strongly indicated that not only an acyl cation-like species but also a phenyl cation-like species may be generated, followed by a reaction with the starting material 3a to give a by-product under the reaction conditions. From the above hypothesis, it was expected that the yield of t-butyl benzoate 5a would be increased using N'-methyl derivative (4) instead of 3a.¹¹ However, although there was no formation of N',N'-dimethylbenzhydrazide, the yield of 5a was reduced (Run 5).

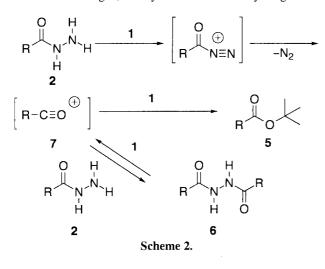
Table 1. The transformation of benzylhydrazide 2a, N'-phenylbenzhydrazide 3a, or N'-methylbenzhydrazide 4 to *t*-butyl benzoate $5a^a$

Run	Substrate	1	Time	Yield
		/equiv	/min	/%
1	2a	4.2	20	50 ^b
2		6.2	20	88
3	3a	4.0	20	70°
4		6.0	20	59
5	4	4.0	60	28

^aAll reactions were carried out at room temperature. ^bN,N'-Dibenzoylhydrazine **6a** was detected by IR spectrum. ^cN',N'-Diphenylbenzhydrazide was obtained in 12% yield.

As shown in Table 2, various kinds of hydrazides 2 or N-phenyl derivatives 3 were converted to the corresponding *t*-butyl ester 5 under similar conditions. It was found that the reactions of 3 gave better result than that using 2 (Runs 1–7). In all reactions using 3 as a substrate, a small amount of N,N-diphenylhydrazide must have been formed. Unfortunately, it was difficult to purify it from the reaction mixture except in Run 3. In the case of N-phenylhydrazide derived from bulky carboxylic acid, the desired product was also obtained in high yield (Run 13).

A typical reaction procedure is as follows: to a THF (3 mL) solution of lithium *t*-butoxide (3.1 mL, THF solution, 1 mol dm^{-3}) was added copper(II) bromide (692 mg, 3.1 mmol) at room temperature under nitrogen, and the mixture was stirred for 15


Table 2. The transformation of hydrazides 2 or N'-phenyl-hydrazides 3 to t-butyl esters 5^{a}

Run	Substrate	1	Temp.	Time	Product	Yield
Run	Substrate	/equiv	remp.	/min	Tiouuci	/%
1	2b	6.2	RT	20	5b	68
2	3b	4.0	RT	20		72 ^b
3		6.0	50 °C	10		86°
4	2 c	8.0	RT	20	5 c	29
5	3 c	6.2	RT	20		83
6	2 d	6.2	RT	20	5d	49
7	3d	4.2	RT	20		84
8	3 e	4.2	RT	20	5 e	83
9	3 f	4.0	50 °C	20	5 f	76
10	3 g	5.0	RT	30	5 g	56
11	3h	4.0	RT	120	5h	67
12	3i	4.0	RT	90	5 i	73
13	3ј	4.0	RT	120	5j	78

^aAll reactions were performed by a similar procedure as described in the text, unless otherwise noted. ${}^{b}N,N'$ -Diphenyl-4methylbenzhydrazide was obtained in 8% yield. ^cCopper(II) chloride was used instead of copper(II) bromide.

min. Then benzhydrazide **2a** (68 mg, 0.5 mmol) was added to the reaction mixture. After being stirred for 20 min, the reaction was quenched by addition of 7.5% aqueous solution of ammonia. The organic materials were extracted with CH_2Cl_2 , and the extract was dried over Na_2SO_4 . After removal of the solvent under reduced pressure, the residue was purified by preparative TLC (*n*-hexane:EtOAc 9:1) and *t*-butyl benzoate **5a** (78 mg) was isolated in 88% yield.

The mechanism of the reaction of 2 or 3 with 1 seems to be complicated. Although the details of the reaction process are uncertain at the present time, a probable mechanism of the formation of *t*-butyl ester 5 is outlined in Scheme 2. Regarding the evolution of nitrogen, an acyldiazonium salt may be generated

From the above proposed pathway, it was expected that 1 had the ability to react with N,N'-diacylhydrazine 6, so that treatment of 6 with 1 under similar conditions was examined (Scheme 3). The results, however, showed that all yields of 5 were low.

	1 (4.2 equiv), THF room temp., 1.5 h,-N ₂	
6a: R=Ph		5a : 57%
6c : R=CH₂Ph		5c : 22%
6d: R=(CH ₂) ₃ Ph		5d : 37%
6f : R= <i>c</i> -C ₆ H ₁₁		5f :14%
	Sahama 3	

Scheme 3.

Further investigation using **1** is now in progress.

References and Notes

- 1 J. Yamaguchi, K. Hoshi, and T. Takeda, *Chem. Lett.*, **1993**, 1273.
- 2 J. Yamaguchi, Y. Shusa, and T. Suyama, *Tetrahedron Lett.*, **40**, 8251 (1999).
- 3 T. W. Greene and P. G. M. Wuts, in "Protective Groups in Organic Chemistry," 2nd ed., John Wiley & Sons, Inc., New York (1991), Chap. 5, p. 245.
- 4 T. Curtius, J. Prakt. Chem., 50, 281 (1894).
- 5 L. A. Carpino, J. Am. Chem. Soc., 79, 96 (1957).
- 6 O. Prakash and V. Sharma, *Indian J. Chem., Sec. B*, **38B**, 229 (1999).
- 7 R. Iqbal, S. Ebrahim, and M. Ziaulhaq, *Tr. J. Chem.*, **21**, 200 (1997).
- 8 H. G. Wingfield, W. R. Harlan, and H. R. Hanmer, *J. Am. Chem. Soc.*, **74**, 5796 (1952).
- 9 P. A. S. Smith, Org. React., 3, 337 (1946).
- 10 *N*',*N*'-diphenylbenzhydrazide, ¹H NMR (DMSO-*d*₆, 300 MHz) δ 11.07 (1H, s), 8.07 (2H, d, *J* = 8.2 Hz), 7.62 (1H, t, *J* = 8.2 Hz), 7.56 (2H, t, *J* = 8.2 Hz), 7.33 (4H, t, *J* = 7.8 Hz), 7.25 (4H, d, *J* = 7.8 Hz), 7.01 (2H, t, *J* = 7.8 Hz); ¹³C NMR (DMSO-*d*₆, 75 MHz) δ 166.73, 147.02, 133.72, 132.63, 129.67, 129.29, 128.20, 122.86, 119.77.
- 11 A preparation of **4**; R. Hinmann and D. Fulton, *J. Am. Chem. Soc.*, **80**, 1895 (1958).